Speak Out
August, 2002 |
IEEE Spectrum
is the publication of -
the Institute of Electrical and
Electronics Engineers, Inc.,
the world's largest professional
technology association.
|
Cellphones,
Radars, and Health
Exposure
standards for electromagnetic radiation do not adequately address current realities
by Raymond S. Kasevich, CS Medical
Technologies LLC |
Raymond Kasevich, founder of KAI
Technologies, Inc. has 30 years of corporate research and development experience in electromagnetic science and
engineering applications. These applications cover a wide range of projects, from full-scale radiofrequency oil
recovery and environmental remediation systems to medical catheter systems for microwave hyperthermia. Mr.
Kasevich has 20 years of University teaching experience in Electrical Engineering. He holds more than 25
patents and has published numerous papers in professional journals. |
His education includes an ME degree
from Yale University in 1963 with undergraduate studies in Electrical Engineering at Case Western Reserve
University and the University of Hartford.
He received a Ford Foundation Grant
for Ph.D. studies at the University of Michigan while working part-time at the Radiation Laboratory in Ann Arbor
on network synthesis problems and continued Ph.D. studies at MIT in the Department of Physics as a special
graduate student. |
|
Ten years ago, the only source of
electromagnetic waves most of us encountered with any regularity was the microwave oven. Today, we hold
cellphones against our heads, walk past cellphone base stations in cities, cradle wireless personal digital
assistants in our hands, and clip text-messaging devices and pagers to our belts. We are even starting to
connect our computers, cellphones, and peripherals with various wireless schemes.
Yet amid this increasingly dense
"electro-smog," we are still using the same outdated and inadequate standards to calculate our
exposure to radio and microwaves.
Regulatory Standards
These standards are based on
conclusions drawn from many experiments in the decades after World War II. Few of those studies, however,
were designed to study low-level, localized biological effects not linked to heat. But electromagnetic theory
and decades of experiments clearly indicate that the electromagnetic fields of radio and microwaves can also
affect cells mechanically, without producing significant amounts of heat. . . . . ^
|
. . . Regulatory Standards
continued
These standards, formulated in the
late 1980s by the American National Standards Institute, the IEEE, and others, are based on the assumption that
if nonionizing radiation affects living cells and tissue, it must do so by heating the tissue.
The standards, known as IEEE/ANSI
C95.1-1991, also calculate exposure over a person's entire body, rather than specific organs or the head and
cheek (in the case of, say, exposure to a cellphone). These heat-based, whole-body standards are used to
calculate maximum exposures permissible for people who work around radiation, such as soldiers or sailors who
work around radars, or technicians who work on cellphone base stations.
The standards are also used in the
design of antenna towers, to limit what passers-by are exposed to. |
The possible link between radio and microwaves, which are forms of
nonionizing radiation, and human health remains one of the most complex and controversial subjects in all of
biophysics. I couldn't possibly review the vast literature on this topic in a short magazine
article. Nevertheless, there is growing scientific evidence that prolonged exposure to some kinds of radio
waves does cause at least low-level changes in the movements, workings, and possibly structure of molecules and
cells in living tissue.
This evidence raises the possibility of
health effects — ones against which our current exposure standards are not adequately protecting us.
"We have more than enough experimental evidence to question the validity of formulating standards that take
only thermal effects into account." |
Molecular Physics and
Electromagnetic Waves
The relevant physics starts with
the fact that all living things absorb and scatter electromagnetic waves. As they do so, they convert, on
a molecular level, the electromagnetic fields of the waves into mechanical forces.
Our bodies are full of ions — in
nerve endings, in cell nuclei, in muscles. In addition, the body's most common molecules, including water,
have an irregular distribution of charge, so that they are influenced by an electric field (or a magnetic field
if the ions or molecules are moving). . . . . ^
|
Thus electromagnetic fields can
physically move, reorient, or even alter molecules or ions — or their distributions — in the body.
They can affect the rate of chemical reactions and the ability of molecules to pass through a membrane.
In addition, if charge acceleration
occurs, perhaps as a result of radar pulses with extremely fast rise times, the tissue itself may reradiate or
scatter this energy inside the human body, complicating and intensifying the radiation's effects. |
Possible links between molecular or cellular effects and human health
are controversial, but a number of experts are focusing their attention on the blood-brain barrier. This
physiological complex, which includes as its primary line of defense the cellular lining of capillaries in the
brain, shields the brain and central nervous system from foreign and harmful substances. The barrier also
seems to control the concentrations of ions in cerebral tissue. |
Early Warnings
Radiation-caused movements or
alterations of ions and molecules can be particularly vigorous when they are caused by electromagnetic pulses
that are sharp and intense. A case in point is the Air Force's early-warning radar, the "Pave
Paws" system in Falmouth, Mass.
In a 1994 paper, Richard Albanese,
a researcher at Brooks Air Force Base (San Antonio, Texas), reported that ultrashort electromagnetic pulses, of
the sort emitted by "Pave Paws" and similar phased-array radars, may cause mechanical damage to tissue
through what is called precursor radiation. The term describes the secondary bursts of radiation that
occur inside living tissue when the tissue is hit by the radar pulses. This precursor radiation is a
potential secondary source of tissue damage — and it is ignored in current exposure
standards.
"Until the issue of tissue
damage mechanisms associated [with] pulses that cause precursors is fully studied," Albanese wrote in his
1994 publication, "the author recommends zero human exposure to such unique precursor and gendering
pulses." |
Some Further Studies
Another study made worldwide
headlines little over a month ago, on 20 June 2002. A team at Finland's Radiation and Nuclear Safety
Authority reported its discovery that mobile-phone-type radiation has an effect on hundreds of proteins found in
lab-grown cells taken from human blood vessels. The leader of the study, Professor Dariusz Leszczynski,
refused to cite the results as proof of a connection to human health. But he did hypothesize that one of
the molecules affected, the so-called stress protein, HSP27, might be the key that opened gaps in the
blood-brain barrier, letting harmful or at least foreign entities into the brain.
More supporting results come from
Professor Henry Lai, in the Department of Bioengineering at the University of Washington in Seattle. Lai
has documented biological effects caused by rates of radiation absorption at levels down to 0.001 W/kg of
irradiated tissue and at power densities in the microwatt-per-centimeter range.
These levels are significantly
smaller than those permitted under current standards. The effects include damage to DNA in cells,
increases in calcium efflux in cells, and decreases in cell division after exposure. |
More Than Enough Evidence
We have more than enough solid experimental evidence to question the
validity of formulating standards that take only thermal effects into account.
It would be irresponsible to continue using standards based on
average, whole-body radiation exposures to laboratory animals, more especially because a great deal of tissue
damage has been done long before a laboratory animal shows behavior changes or dies from thermal effects.
What next?
We must revise
our safety standards and set conservative new ones using all of the available results and information
— not just the data that fits previously held assumptions.
The telecommunications industry, which is
in deep denial, needs to face reality. Professional groups, such as the IEEE's Standards Association, must
work with the U.S. government and international agencies to ensure that studies of long-term, low-level,
nonthermal bioeffects are put in place. The U.S. Congress needs to recognize the urgency of these studies
and not just defer to the telecommunications industry when creating or modifying legislation.
For many of us, cell telephones are an
indispensable part of our lives and lifestyles. Cellphone towers now line our highways and dot our
communities. There is no turning back now. But we have a right to expect standards that will truly
protect our health and well-being.
Raymond S. Kasevich |
1. For the Finnish study by their Radiation and Nuclear Safety
Authority team led by Professor Leszczynski that discovered mobile-phone-type radiation having a stress effect on the
stress protein that opened gaps in the blood-brain barrier and could let harmful or at least foreign entities into
the brain, click to see this page .... Blood Brain Barrier breach
2. For the USA study by Professor Henry Lai, Department of
Bioengineering, University of Washington that found biological effects caused by rates of radiation absorption at levels
far less that current US guidelines, click to see this page .... (Link to come)
|